< Back to Search Results

Using Integrated Simulation to Optimize Heavy Equipment Design

Download PDF

Heavy equipment manufacturers want to design products that are durable and perform at their peak under a variety of conditions. To accomplish this, Altair provides an integrated multi-disciplinary simulation environment to virtually test and optimize equipment performance and therefore, help reduce design and development costs. Using simulation-driven design, studying the full dynamics of a product or system is possible, from motion analysis to complete lifecycle durability testing.

All Related Technical Document

Research Report: Simulation-Driven Design for Manufacturing (SDfM) Experiences

Research Report: Simulation-Driven Design for Manufacturing (SDfM) Experiences

Product engineers are under consistent pressure to reduce the costs, improve the quality and increase the throughput of manufacturing processes. This fast-paced environment is not well suited for trial-and-error manufacturing engineering. How are engineers responding to these challenges? Is simulation and simulation-driven design for manufacturing (SDfM) well established across the industry? When simulation is deployed, does it deliver on the promises of reducing costs while improving throughput and quality? And what are the barriers to the adoption of simulation during the early stages of product development? In this 2021 survey report conducted by Engineering.com, we discuss those questions and discover: • Top design priorities • Top benefits of SDfM • Top barriers to expanding and adopting SDfM • Risks to staying competitive in the market

Technical Document
What is Simulation Doing for Machine Builders

What is Simulation Doing for Machine Builders

A key development goal of any machine-building project is to produce perfectly running, reliable machines that make high-quality products. By leveraging accurate virtual prototypes, seamless production can be ensured earlier in the development process to help assess and improve product profitability.

Technical Document
Outsmarting Heavy Equipment Design

Outsmarting Heavy Equipment Design

Heavy mobile machines consist mostly of production equipment working almost twenty hours a day, year on year, in diverse harsh environments, undergoing extreme loads and overloads. Especially diggers and loaders such as hydraulic excavators, wheel loaders, and backhoes, cater to multiple applications with use cases such as digging, trenching, loading, lifting, breaking, and ripping. Many times, these machines undergo non-standard uses where the machine is subjected to unplanned forces and moments as in the case of self-loading on a trailer, or a bucket hitting a dump truck body. This paper highlights the workflow process and simulation-driven methods to integrate multi-physics with Altair’s industry-leading solutions. The latest generation of Altair simulation tools can capture a wider range of vehicle systems and environmental interactions.

Technical Document
Combining System Modeling & Data to Optimize Heavy Equipment Performance

Combining System Modeling & Data to Optimize Heavy Equipment Performance

Information silos present a major challenge to Heavy Equipment OEMs. Poor integration of simulation models across the product life cycle, limited reuse of models between programs, and a variation of modeling maturity across various engineering disciplines result in lack of traceability and ultimately hampers development efficiency and product performance. Using system modeling and asset-centric data analytics solutions help develop and orchestrate coherent models to increase decision-making confidence and speed.

Technical Document
Optimizing Investment Casted Parts with Simulation and 3D-Printing

Optimizing Investment Casted Parts with Simulation and 3D-Printing

Investment casting is a valued manufacturing process known for its ability to produce detailed components with accuracy, repeatability, and in a variety of different metals, waxes, and high-performance alloys. Producing high-quality casted components is less prone to common design errors when a simulation-driven approach is used, leading to easier, more accurate analysis and optimization during the design phase.

Technical Document
Two- and Three-Wheel Vehicle Simulation

Two- and Three-Wheel Vehicle Simulation

Two- and three-wheeler vehicle manufacturers, whether they are existing OEMs, new EV start-ups, or suppliers serving this segment, all have the goal of shortening product development time and getting product to market faster. With Altair HyperWorks™, ride, durability, and vehicle dynamics simulations for two- and three-wheeled vehicles can now be seamlessly performed using an intuitive and easy to use GUI with built-in libraries for vehicle models, analyses, and predicting and optimizing vehicle behavior.

Technical Document
Technical University of Munich Optimizes Battery Production Processes

Technical University of Munich Optimizes Battery Production Processes

The Battery Production Group at the Institute for Machine Tools and Industrial Management at the Technical University of Munich (TUM) researches the production of innovative battery cells.

The core of the work is process development and the optimization of processes within battery production – from mixing, coating and calendering of the electrode materials to the formation of the final battery cells. All battery production steps are carried out in-house using the TUM’s electrode and battery production line.

TUM uses Altair EDEM software to simulate the calendering process for lithium-ion batteries.

Technical Document
Leveraging Digital Twins to Increase the Effectiveness of the MBD Approach

Leveraging Digital Twins to Increase the Effectiveness of the MBD Approach

As of today, the “classical” V diagram is very well known among more and more engineers. Nonetheless its usage – even partly – is far away from the potential that it offers. One reason might be, that its benefits are not really obvious for the end-users. With this presentation, we will bring a new view by “closing the old V” and transferring it to a “closed ∇ (Nabla) cycle”. The focus of this contribution is on the opportunities to significantly increase the effectiveness of the approach of model-based development (MBD) by re-using engineering efforts in multiple ways.

Technical Document
Achieving Aerospace Design Confidence with Model-based Systems Engineering

Achieving Aerospace Design Confidence with Model-based Systems Engineering

Reducing aircraft design and development time is critical for all aircraft manufacturers, from urban air mobility and electric aircraft startups to military to commercial OEMs. In order to fully understand and optimize the complex systems of systems required in modern aircraft, aerospace engineers leverage a simulation method called Model-based Systems Engineering (MBSE). MBSE allows the evaluation of various types of vehicle systems to determine which best meet the mission requirements.

Technical Document
Improving the Shipbuilding Block Assembly Method: An Engineering Approach

Improving the Shipbuilding Block Assembly Method: An Engineering Approach

Block construction is a modern shipbuilding method which involves the assembly of prefabricated modular sections. Cross-sections of the superstructure are pre-built in a shipyard, taken to the building dock, then hoisted into position and attached. Block splitting and lifting schemes are largely devised after the ship design phase is completed, relying on empirical data and expertise to avoid costly and potentially dangerous failures during build-up. Advances in computer-aided engineering (CAE), however, now make it possible to plan ship build-up in the principal design phase, giving designers greater insights into block assembly process outcomes and reducing downstream risk through simulation.

Technical Document
Additive Manufacturing for Production

Additive Manufacturing for Production

The Additive Manufacturing for Production survey conducted by TCT Magazine in association with Altair set out to understand the community’s desire and readiness for the much-promised land of series production using additive technologies. This collaboration between TCT and Altair was designed to understand the needs of the community in terms of current production capabilities, rate-limiting steps and areas of the technology that they believe needs improvement.

Technical Document
The Influence of Sensors on e-Motor Powertrain Performance

The Influence of Sensors on e-Motor Powertrain Performance

High accuracy sensors and encoders are integral components of an e-motor drive, greatly impacting the quality and efficiency on the system. A purpose-driven simulation approach is needed to account for all the physical interdependencies within these complex multi-domain systems.

Technical Document
Generative Design and Topology Optimization Report

Generative Design and Topology Optimization Report

This special report by engineering.com covers two of the most talked-about trends in the product design community today: Generative Design and Topology Optimization. These simulation techniques allow customers to design lightweight and performative parts using a simulation-driven design approach.

Technical Document
Simulation-Driven Design of a Portable Basketball Hoop System - Initial Steps

Simulation-Driven Design of a Portable Basketball Hoop System - Initial Steps

A simulation-driven design process is proven to generate improved, more robust and cost-effective designs within a shorter design cycle. Incorporating simulation and optimization early in the design cycle helps shape the concept designs so less iterations and rework is necessary as the design matures. This paper is intended to discuss the initial steps that can be taken when using a simulation-driven design approach to design and engineer products. Several of Altair’s design and engineering tools will be coupled to achieve various design goals.

Technical Document
Multi-Physics Design and Optimization of a Complex Radar System

Multi-Physics Design and Optimization of a Complex Radar System

Today, most products are complex mechatronic combinations of advanced technologies, mixing electrical parts with controllers and embedded software. To efficiently manage innovative products, organizations are turning to a Model-Based Development approach for concept studies, control design, multi-domain system simulation and optimization. To meet this demand, Altair’s simulation and optimization suite aims to transform design and decision-making throughout product lifecycles with their multi-disciplinary software tools and consultancy services.

Technical Document
Innovative Service Bureau Combines Simulation-Driven Design and 3D Printing

Innovative Service Bureau Combines Simulation-Driven Design and 3D Printing

A company specializing in 3D printing relies on simulation to make tools for injection molding that are less expensive, lighter and better than those created with traditional methods.

Technical Document
Topology Optimization and Casting Feasibility of a Robot Arm

Topology Optimization and Casting Feasibility of a Robot Arm

Oftentimes, in the design of a casting, suboptimal structural concepts are developed which at the same time are not castable, requiring multiple and time-consuming design iterations. This paper describes a process to generate both structurally efficient and also castable parts, while reducing the overall design cycle time. The optimal structure is determined by topology optimization, reducing component mass while maintaining performance requirements. This step is followed by a design smoothing operation and then by a casting simulation to check for casting defects. To demonstrate this software driven product design and process validation, solidThinking Inspire® is used to develop the concept design and Click2Cast® for casting process validation.

Technical Document
White Paper: Linking System Requirements with Product Performance for Design Balance

White Paper: Linking System Requirements with Product Performance for Design Balance

XLDyn® allows the product engineer to develop and track requirements associated with different verification methods, so the current project status is always available. In addition, XLDyn® has fully integrated system level Design of Experiments (DoE) that provides valuable design guidance to select the best set of parameters or parts. Even test data can be included in the DoE.

Technical Document
Thermal Analysis of Electrical Equipment A review and comparison of different methods

Thermal Analysis of Electrical Equipment A review and comparison of different methods

Nowadays, it is more and more difficult to design electro-technique devices without having a look at thermal stress. In more and more applications (more electric vehicles, more electric aircrafts, …) designers need to reduce weight, cost, increase efficiency, and keep the same security factor. One possibility is to increase current for the same device, needing to check how to draw away the heat. This is why the classical approximations need to be cross checked with complementary analysis. These new tools have to be rapid and accurate in order to run parametric and even optimization analysis. There is also a need for fast model in order to check robustness versus driving cycles. The goal in this article is to review rapidly the different methods available, depending on the accuracy required and the solving speed. The method includes equivalent thermal circuits, Finite elements methods and CFD analysis.

Technical Document
A Design-Validation-Production Workflow for Aerospace Additive Manufacturing

A Design-Validation-Production Workflow for Aerospace Additive Manufacturing

Additive manufacturing coupled with topology optimization allows the design-and-analysis and manufacturing iterations to be reduced significantly, or even eliminated. To ensure that the part will perform as simulated, a mid-stage validation is conducted on a standardized part before creating the final products.

Technical Document
Simulating the Suspension Response of a High Performance Sports Car

Simulating the Suspension Response of a High Performance Sports Car

The use of CAE software tools as part of the design process for mechanical systems in the automotive industry is now commonplace. This paper highlights the use of Altair HyperWorks to assess and then optimize the performance of a McLaren Automotive front suspension system. The tools MotionView and MotionSolve are used to build the model and then carry out initial assessments of kinematics and compliance characteristics. Altair HyperStudy is then used to optimize the position of the geometric hard points and compliant bush rates in order to meet desired suspension targets. The application of this technology to front suspension design enables McLaren Automotive to dramatically reduce development time.

Technical Document
Cobot, the Collaborative Robot - Get Ready for Industry 4.0

Cobot, the Collaborative Robot - Get Ready for Industry 4.0

Development tools and methods, such as simulation, are increasingly important to face and address the pressure of innovation. As an example, for successful new design methods and to show how simulation tools are used, Altair developed a virtual demonstrator based on a cobot application. This complex machine interacts with a human operator as the ultimate smart manufacturing equipment - to show how challenges in modern product design can be overcome.

Technical Document
Digital Transformation for Mobile Machines through System Simulation

Digital Transformation for Mobile Machines through System Simulation

When developing mobile machines, manufacturer focus is twofold: 1) Increasing a machine’s productivity and operator comfort 2) Improving its energy efficiency. To achieve these objectives, it is crucial to have an optimized system-of-systems and seamless interaction between subsystems. But how can manufacturers design components from varied disciplines like mechanics, electronics, and hydraulics to create a holistic overall system having optimal performance? The answer is digital transformation.

Technical Document
ADAS Simulation Under Severe Vibrations

ADAS Simulation Under Severe Vibrations

Automotive radars are becoming standard equipment on vehicles. Their purpose is to adjust the distance between vehicles and/or alert the driver when dangerous situations arise. Several antenna architectures are used to cover the different safety functions in complex bumper/car chassis environment where the side effects become more and more significant on the radar performances. Hence, automotive radar integration process becomes a very important topic. Weak radar integration will generate gain loss, high side lobes levels and angular errors. Those degradations will impact the radar range, the main radar axis (BSE) and the radar detection quality (resolution, ambiguity, discrimination).

Technical Document
Have a Question? If you need assistance beyond what is provided above, please contact us.