< Back to Search Results

Using Advanced Simulation to Design Leading Motorcycles

Rod Giles, Group Manager CAE & CAD presents at the UK ATC 2019. Royal Enfield has and is undergoing a massive transformation, not only in the sales and manufacturing departments, but also in the way the motorcycles are designed and developed. Leading the way in the development of all new motorcycle platforms is the use of advanced Computer Aided Engineering (CAE) tools. At Royal Enfield we use a wide array of different tools and techniques. The primary tool for model preparation and analysis is Altair Hyperworks. Rather than trying to cover the vast range of analyses carried out, today I will concentrate on some examples where advanced techniques have helped the design process including using smooth particle hydrodynamics (SPH) in explicit analysis to evaluate fuel tank integrity, using NVH director to evaluate and improve transfer path analysis (TPA) to aid the rider comfort, using topology optimisation to reduce mass and improve structural performance of engine and chassis components, and using MotionSolve to understand complex mechanism dynamics.

All Related Conference Presentations

Powering New Possibilities in the Cloud

Powering New Possibilities in the Cloud

Together with cloud providers and our other HPC partners, Intel is driving the performance and flexibility that are critical to running advanced HPC workloads in the cloud. We collaborate across our HPC ecosystem to help cloud providers offer accelerated, secure, and agile environments using our latest technologies, such as Intel® Xeon® processors. As cloud customers continue exploring new possibilities and applications for HPC, Intel is dedicated to facilitating their success. Intel works with HPC partners from various industries to enable forward-thinking cloud use cases such as bursting, AI, and advanced analytics. Learn how Intel collaborates with Public and Private Cloud Service Providers to optimize HPC workloads for fast, cost-effective execution on Intel-based Cloud Instances.

Conference Presentations
Door operation Simulation & Performance Estimation

Door operation Simulation & Performance Estimation

The door closing feel is directly experienced by the customer and is typically treated as a subjective functional attribute. Objective targets have also been identified and correlated with subjective feelings, even though the final sign-off happens based on subjective assessment. Door Closing is a complex function involving multiple subsystems, their behavior & interface across parts.

India ATC 2021
Optimizing a Thrust Balance through a Multiphysics Approach

Optimizing a Thrust Balance through a Multiphysics Approach

Dactem (a DAM group company), developer of specialist test, measurement and assembly solutions for the aerospace industries, presents an overview of the optimization of a thrust balance used for accurate measurements in electrical thruster qualification endurance testing. The presentation will provide details on how a Multiphysics simulation approach was used to find the optimum design taking mechanical, thermal and electromagnetic performance into account. Speakers: Emmanuel Pouleau, CEO, Dactem (a DAM Group company) Pierre Moutet, Engineer, Dactem (a DAM Group company) Duration: 15 minutes

Conference Presentations
Bringing the Future Faster Through Innovation and Analysis, by American Axle & Manufacturing (AAM)

Bringing the Future Faster Through Innovation and Analysis, by American Axle & Manufacturing (AAM)

AAM has been providing mechanical drivelines to automotive customers for more than 25 years. As the automobile transitions to electrification, so too must the driveline. AAM has developed a suite of innovative, lightweight, compact and cost-optimized electric drive units and electric beam axles to meet the growing global technology demand as electric vehicles continue to expand over the next decade. Engineering simulation, optimization and validation tools were significant enablers to increase the validation confidence and reduce the time to market for these new products.

Future.Industry 2021
Fireside Chat: Why Engineers will be the key to unlock the digitilization potential at manufacturers

Fireside Chat: Why Engineers will be the key to unlock the digitilization potential at manufacturers

The ever-advancing digitization is being driven by the convergence of simulation, data, and HPC. While virtual methods, interoperable tools, and standardized interfaces become state of the art, the engineers and their management will play a significant role to break down silos and benefit from a Digital Thread. In this fireside chat, we will discuss the importance of people to unleash the potential of Digital Twins, how they can combine the different fields of product development and what is still missing to make the connection.

Future.Industry 2021
Streamlining Product Development by Using Digital Twins with Integrated System Simulation

Streamlining Product Development by Using Digital Twins with Integrated System Simulation

The Digital Twin concept is broadly applicable to all Altair customer base wanting to develop better products faster. We will explain how to maximize the value you can get from the Altair Platform for Digital Twins. We will illustrate how this solution helps diverse engineering teams develop better, more complex products faster by avoiding work in silos. This will include proven uses cases for the convergence of simulation and data.

Future.Industry 2021
Future.Industry CEO Keynote: The Convergence of AI, Simulation and HPC

Future.Industry CEO Keynote: The Convergence of AI, Simulation and HPC

At Altair, we see a future where seemingly disparate systems work seamlessly together to help businesses succeed. Where pin-point accuracy and speed mean the difference between winning and losing. The world of data science is intersecting with high-performance cloud computing, artificial intelligence, and IoT, unlocking limitless potential and enabling enterprises of all sizes to compete on a global scale while creating a more sustainable future.

Future.Industry 2021
Using FEA for train homologation - modeling bolted assemblies, composites parts, and topology optimization

Using FEA for train homologation - modeling bolted assemblies, composites parts, and topology optimization

In order to ensure the safety of passengers and on-board personnel, finite element calculation is used at SNCF as part of the acquisition, renovation / modernization projects of trains as a decision aid and preparation for testing approval of trains. This is the main case of the mechanical strength of bolted and screwed assemblies, and more and more of the integration of composite materials into rolling stock structures in order to make them more capacious and less energy intensive. To do this, SNCF is developing methodologies to make the modeling of bolted assemblies and composite parts more reliable, as well as topology optimization. The tools of the HyperWorks suite, and in particular, the OptiStruct solver, allow SNCF to represent its types of materials, as well as these phenomena (bolted assemblies + topology optimization).

Presented at the ATCx Heavy Equipment in May 2021.

Speakers: Patrick Jumin, Derik Joël Kengne Tapchom & Karim Slimani, SNCF

Duration: 20 minutes

Conference Presentations
A flexible tire model for accurate prediction of off-road vehicle dynamics on soft soils

A flexible tire model for accurate prediction of off-road vehicle dynamics on soft soils

For several years now, co-simulation between Multibody Dynamics (MBD) codes like MotionSolve and Discrete Element Method (DEM) software like EDEM has been used for many applications such as vehicles and material transportation. One missing link has been a realistic tire model that not only could interact with the soil material in a realistic way but also show the influence of varying tire pressure, change in contact area and pressure distribution over said contact area.

For very soft material such as deep mud with a high-pressure tire, using a rigid wheel is a decent approximation. But for tires on harder surface, this method has several short comings. For example, a rigid representation of the tire will have neglectable rolling resistance while the pressure distribution on a real tire has its peak well ahead of the centerline of the tire producing a resisting moment to the motion. The contact patch area will in reality not depend on sinkage, but the sinkage is dependent on the contact area that is dependent on load and internal pressure.

This presentation introduces the new PM-FlexTire model that is integrated in EDEM and will work with MotionSolve. Requirements for creating and correlating the tire model is presented together with several application examples on mud, clay and gravel beds.

Presented at the ATCx Heavy Equipment in May 2021.

Speaker: Jesper Slattengren, Technical Fellow, Pratt Miller

Duration: 20 minutes

Conference Presentations
Less Weight, More Freight

Less Weight, More Freight

TransAnt GmbH is an Austrian joint venture by ÖBB Rail Cargo Group and voestalpine Stahl GmbH with the aim to bring more efficient and effective transport alternatives on to the market and thus making rail freight transport more attractive and sustainable.

In this presentation the company talks about the development of their freight wagon “TransANT” - a revolutionary platform concept that reacts to the changing needs of their customers. Its 20% lighter underframe creates a payload advantage of up to 4 tonnes per wagon. Industry-specific wagon bodies and straightforward swapping make for ideal logistics solutions - adaptable to every type of logistical requirements. Using Altair software, the company is currently making TransANT assemblies ready for serial production.

Presented at the ATCx Heavy Equipment in May 2021.

Speakers: Anja Schmid, Key Account Manager & Andreas Tomschi, Development Engineer, TransAnt

Duration: 20 minutes

Conference Presentations
Creation of a street sweeper multibody dynamics (MBD) model and verification by field tests

Creation of a street sweeper multibody dynamics (MBD) model and verification by field tests

The chassis of a the RAVO 5 iSeries street sweeper has been a proven design that has remained relatively unchanged since the mid-60’s. However, due to increasing weight and size requirements, as well as possible changes to the driving mechanism, an overhaul of the chassis platform is needed. To develop a new (modular) chassis, which is suited for upcoming and future changes, a CAE-driven design approach is chosen, which is being performed by VIRO. When using computer-aided engineering (CAE), the chief problem is to define or estimate the acting loads and / or boundary conditions on a structure. In case such a structure is dynamically loaded, such a determination is further aggravated. Furthermore, if that structure is a chassis, a wide range of load cases and interconnected systems (e.g. tyres, suspension) effect the multifaceted loading behavior.

By utilizing multibody dynamics (MBD) and creating a MBD-model of the current street sweeper, a first step is taken towards developing a new (modular) chassis. The calculated loads and moments acting on the suspensions and chassis are quantified for e.g. several worst case scenarios, which allows for well-founded decisions in relation to the new design. Furthermore, these load conditions can be used as input for future topographic optimizations and / or stress analyses. An important part, when creating a CAE-model, i.e. in this case a MBD-model, is the validation of that model by experiments and /or analytic formulations. Consequently several calculated load cases have been tested in the field and in mutual cooperation. A subsequent verification shows that the measured accelerations correlate well with the calculated accelerations from the MBD-model.

Presented at the ATCx Heavy Equipment in May 2021.

Speaker: Thijs Romans, Group Leader Engineering Analysis, VIRO

Duration: 20 minutes

Conference Presentations
First Time Right Machine Design with CAE Simulation

First Time Right Machine Design with CAE Simulation

G.S. Vidyaprakash presents how Lakshmi Machine Works Ltd. drives the design process with simulation. In his presentation First Time Right Machine Design with CAE Simulation, he discusses reliable simulation techniques to predict & prevent failure modes.

ATCx Industrial Machinery 2021
Improve Cobot collaboration: More meaningful controller design with high fidelity plant models

Improve Cobot collaboration: More meaningful controller design with high fidelity plant models

Controller strategy expert Lorenzo Moretti presents how to improve Cobot collaboration. In the context of virtual commissioning, he discusses how more meaningful controller design is possible with realistic plant models.

ATCx Industrial Machinery 2021
Failing Fast is not an option! Develop world

Failing Fast is not an option! Develop world's first robotic car storage service with accurate virtual prototypes

Benoit Pelourdeau presents how Stanley Robotics SAS drives the design process with simulation, to develop the world's first robotic car storage service. Learn from him how the interdisciplinary mechatronic product development team succeeds with accurate virtual prototypes.

ATCx Industrial Machinery 2021
Faster evaluation of real-world machines -   Improve system understanding with dynamic motion analysis

Faster evaluation of real-world machines -  Improve system understanding with dynamic motion analysis

Daniel Jauss, Application Engineer CAE, gives a Demo Sessions on Altair Simulation Solutions for faster evaluation of real-world machines, explaining how to improve system understanding with dynamic motion analysis to Identify real behavior of the machine assembly and Identify peak loads.

ATCx Industrial Machinery 2021
Faster evaluation of real-world machines -  Improve the Design with Studies and Design Exploration

Faster evaluation of real-world machines - Improve the Design with Studies and Design Exploration

Simon Zwingert, Technical Consultant, gives a Demo Sessions on Altair Simulation Solutions for faster evaluation of real-world machines, explaining how, to improve the design with studies and the design exploration on the complete assembly to perform weld line optimization.

ATCx Industrial Machinery 2021
Faster evaluation of real-world machines -  Vibration Reduction with topology optimization

Faster evaluation of real-world machines - Vibration Reduction with topology optimization

Daniel Jauss, Application Engineer CAE, gives a Demo Sessions on Altair Simulation Solutions for faster evaluation of real-world machines, explaining how to realize vibration reduction with topology optimization performing a modal analysis & Optimization of a machine portal, identifies economic manufacturing alternatives, and conducts a topology optimization for sheet metal constructions.

ATCx Industrial Machinery 2021
Faster evaluation of real-world machines -  CNC Control Optimization

Faster evaluation of real-world machines - CNC Control Optimization

Christian Kehrer, Business Development Manager System Modelling, gives a Demo Sessions on Altair Simulation Solutions for faster evaluation of real-world machines, explaining how CNC control optimization is performed to realize toolpath error correction of a CNC milling machine, with system simulation and how more effective controller design with realistic plant models is realized.

ATCx Industrial Machinery 2021
From CNC Jobshop to the largest manufacturer of CNC Rotary tables

From CNC Jobshop to the largest manufacturer of CNC Rotary tables

Indradev Babu, Managing Director, UCAM PVT LTD, explains how he developed a CNC Jobshop to the largest manufacturer of CNC Rotary tables—presenting different development examples, he explains how Simulation Driven Design helps him to differentiate and what simulation Strategies he implements in the customer-centric development for the following generation Machine Tools at UCAM.

ATCx Industrial Machinery 2021
Simulation along product life cycle – The future is now From motivation to customer value

Simulation along product life cycle – The future is now From motivation to customer value

Industry expert Dennis Baum presents how Weber Maschinenbau applies simulation, how simulation can be used along product lifecycle and which benefits arise to customers and internal processes.

ATCx Industrial Machinery 2021
Simulation as a central element of Mayer & Cie’s digital development strategy More efficient machine generations thanks to  virtual product development

Simulation as a central element of Mayer & Cie’s digital development strategy More efficient machine generations thanks to virtual product development

Mayer & Cie. GmbH & Co. KG sets simulation as a central element of the digital development strategy and leverages virtual product development for more efficient machine generations. Marcel Wohlleb presents simulation applications and illustrates how customers of the world market leader in circular knitting benefit.

ATCx Industrial Machinery 2021
Economic CNC machine design through structural optimization

Economic CNC machine design through structural optimization

Mr. Vijay Zala and Mr. Pragnesh Zala present development methodologies for new economic machine generations and showcase why Jyoti CNC Automation Ltd. sets simulation at the core of the development strategy.

ATCx Industrial Machinery 2021
ATCx E-Powertrain - E-Motor Panel Discussion

ATCx E-Powertrain - E-Motor Panel Discussion

A recording of the electric motor development panel discussion as part of the ATCx Electric Powertrain virtual event in March 2021. The panel features insight from Cleef Thackwell, Lead Motor Design Engineer at Jaguar Land Rover; Dr. Lars Fredriksson, VP Global Automotive at Altair; James Eves, Team Manager at Altair; Jonathan Stevens, Senior Development Engineer at Equipmake; Andy Jones, Innovation Program Manager at HiETA Technologies; Sergi Riba, Design Engineer at Safran Ventilation Systems; and Vincent Leconte, Senior Director of Global Business Development, Electromechanical Solutions at Altair.

Conference Presentations
Battery Part 1: Developing Predictive Electro Thermal Cell Models for Pack Level Deployment

Battery Part 1: Developing Predictive Electro Thermal Cell Models for Pack Level Deployment

Martin Kemp, Regional Manager at Altair, Dr. Denis Cumming, a Senior Lecturer at The University of Sheffield, John Milios, CEO at Sendyne, Dr. Gregory Offer, Reader at Imperial College London and finally Professor Jun Xu, Director of Vehicle Energy & Safety Laboratory at The University of North Carolina, present - Developing Predictive Electro Thermal Cell Models for Pack Level Deployment. This presentation will focus on the simulation of the battery cell to represent its complex thermal and mechanical behaviour. The thermal behaviour requires the simulation of the electric behaviour within the cell which leads to the generation of heat. Managing the thermal behaviour is fundamental to the long term health of the battery. The talk provides an overview of the technologies used to simulate battery behaviour, commencing with the understanding of the battery structure including the simulation of electrode manufacture. Both electrochemical and equivalent circuit models will be discussed with the advantages and disadvantages of both methods presented. Finally, machine learning technology is used to create an intelligent cell model which retains accuracy whilst delivering computational efficiency which can be used in Part 2.

Conference Presentations
Battery Part 3: Simulation Technology Facilitating Battery Pack Range Optimization

Battery Part 3: Simulation Technology Facilitating Battery Pack Range Optimization

Dr. Richard Boyd, Technical Specialist at Altair take us through his presentation, Simulation Technology Facilitating Battery Pack Range Optimization. Richard will take the battery module presented in Part 2 and create a full 3D model of the module - the duty cycle, event and optimization is repeated in this environment. This is performed efficiently in a Finite Element environment. In addition, a link to a 3D Computational Fluid Dynamics solver is highlighted if additional verification is required.

Conference Presentations
Multi-Physics Design of e-Motors Using Optimization with Examples from Porsche and AMG

Multi-Physics Design of e-Motors Using Optimization with Examples from Porsche and AMG

Dr. Lars Fredriksson, VP - Simulation Driven Innovation at Altair, presents the multi-physics design of e-motors with a particular focus on optimising performance including efforts to maximize torque and power under defined driving conditions while keeping rotor stresses, motor vibrations and motor temperature within certain limits. We’ll also see some specific examples of this process as applied to e-motor development at both Porsche and AMG.

Conference Presentations
Creating the World’s Most Power Dense Electric Motor

Creating the World’s Most Power Dense Electric Motor

James Eves, Team Manager at Altair, Jonathan Stevens, Senior Development Engineer at Equipmake and Andy Jones, Innovation Program Manager at HiETA Technologies, discuss AMPERE, a joint project to produce an extremely lightweight, efficient but low-cost electric motor with an extremely high continuous power density. The consortium will present some of the engineering challenges that designing such a high performance motor has posed, and how these challenges have been overcome through advanced manufacturing technology and simulation driven design.

Conference Presentations
Delivering the Electric Revolution with Intelligent Simulation Technologies

Delivering the Electric Revolution with Intelligent Simulation Technologies

Dr. Royston Jones, CTO and Dr. Anthony Hahnel, Technical Director, give their keynote presentation during the ATCx Driving Innovation in Electric Powertrain 2021.

Conference Presentations
Accelerating Turbofan Structural Design with Altair HyperWorks

Accelerating Turbofan Structural Design with Altair HyperWorks

Ross Atherton is a Structural Systems Design Engineer in the Rolls-Royce Civil Aerospace Future Programmes Engineering department. After a period of supporting Rolls-Royce’s growing large engine fleet, Ross turned to future products; and has since led a small team designing, assessing, and enhancing the conceptual product architecture of future market opportunities. Ross’ presentation will go into detail on how Rolls-Royce have deployed the Altair Hyperworks toolset to enhance the structural efficiency of their UltraFan engine, covering: rapid model and mesh creation; new insights from structural optimisation and robust design; integrated post-processing; and the resulting acceleration of the engineering design iteration cycle.

Conference Presentations
Efficient Engineering Based Modeling of Layered Composite Structures

Efficient Engineering Based Modeling of Layered Composite Structures

This presentation is by Program Manager Rob Jopson. It’s a given that the simulation models we build are intended to capture and predict physical behavior, the data used to create them is not always representative of the manufacturing process used to build the physical part. For layered composite parts in particular, this mismatch can cause significant overhead in managing the simulation data as the model is created and evolves. To solve this problem, Altair’s ply-based modeling methodology strives to maintain a 1:1 relationship between the simulation data and the manufacturing process, independent of solver. The latest developments of this methodology will be presented as a workflow in the new Composite Browser, available in HyperWorks. The recording is about 18 minutes long and was originally presented at the 2020 ATCx Composites.

ATCx Composites 2020
End-to-end Workflow for Modeling Layered Composites in HyperWorks

End-to-end Workflow for Modeling Layered Composites in HyperWorks

This workshop on end-to-end workflow for modeling layered composites in HyperWorks was conducted by Program Manager André Möenicke. The recording is about an hour and 37 minutes long, and and was first presented at the 2020 ATCx Composites.

ATCx Composites 2020
Molding and Structural Simulation of Injection Molded Parts

Molding and Structural Simulation of Injection Molded Parts

This workshop on molding and structural simulation of injection molded parts was conducted by Frank Ehrhart, EMEA Technical Specialist - Material Engineering/Multiscale Designer. The recording is a little over an hour long, and and was first presented at the 2020 ATCx Composites.

ATCx Composites 2020
VABS: Modeling Composite Beam-like Structures with 3D FEA Fidelity

VABS: Modeling Composite Beam-like Structures with 3D FEA Fidelity

Variational asymptotic beam section (VABS) is a unique technology continuously funded by the US Army since 1988 and it has become a tool of choice in the helicopter and wind turbine industries for modeling composite rotor blades. With analysis of a finite element meshed cross section, VABS can compute the best set of beam properties for 1D beam analysis and also accurately recover 3D stress/strain distribution over the cross section. VABS has been integrated with HyperWorks and OptiStruct for Altair users to take advantage of this powerful technology for better design and analysis of composite beam-like structures.  The recording of the presentation by Dr. Wenbin Yu, CTO of AnalySwift, is almost 20 minutes long, and was originally presented at the 2020 ATCx Composites.

ATCx Composites 2020
End-to-end Workflow for Modeling Layered Composites in HyperWorks

End-to-end Workflow for Modeling Layered Composites in HyperWorks

This workshop on end-to-end workflow for modeling layered composites in HyperWorks was conducted by Program Manager Rob Jopson. The recording is about an hour and 32 minutes long, and and was first presented at the 2020 ATCx Composites.

ATCx Composites 2020
Material Characterization / Virtual Testing

Material Characterization / Virtual Testing

This workshop on material characterization/ virtual testing was conducted by Jeff Wollschlager, VP of Composites Technology. The recording is about an hour and 32 minutes long, and and was first presented at the 2020 ATCx Composites.

ATCx Composites 2020
Composites at Altair

Composites at Altair

This presentation is by Markku Palanterä, Director Composites Business Development, Altair The composites design and simulation suite by Altair is actively developed with a holistic view to cover all stages of the process from material modeling all the way to the certification of composite structures. On the material modeling side, the focus is on continuous further development of Altair’s multiscale modeling technology for continuous fiber composites and injection molded plastics, but not forgetting further application areas, such as additive manufacturing. The ply-based composite modeling in Altair HyperWorks has recently undergone a major update to achieve an improved, more efficient modeling workflow. This together with planned further developments tie the modeling even better with the manufacturing to create realistic models of composite components as built. Altair’s solver technology for implicit and explicit analyses can utilize multiscale material models to accurately describe composite material nonlinear behavior up to failure. Altair’s unique composites optimization technology is being enhanced with the repeat laminate concept that provides added efficiency and user control over lay-up design. To further complement the idea of an integrated system with all the necessary composites capabilities, the Composite Stress Toolbox has been introduced in HyperWorks to support design and certification. The recording is about 22 minutes long and was originally presented at the 2020 ATCx Composites.

ATCx Composites 2020
Multiscale Methods: from Theory to Practice

Multiscale Methods: from Theory to Practice

In this presentation, Dr Jacob Fish, Professor, Columbia University, introduces some of the key concepts and approaches in multiscale modeling, highlights recent advances aimed at developing practical multiscale tools, and survey the current landscape in multiscale modeling ranging from linking atomistic-to-continuum and continuum-to-continuum scales, physics and data-driven multiscale approaches, and applications in automotive, aerospace and biomedical industries. The recording is about 41 minutes long and was originally presented at the 2020 ATCx Composites.

ATCx Composites 2020
Improved Workflow with Integrated Composite Stress Toolbox and Certification

Improved Workflow with Integrated Composite Stress Toolbox and Certification

This presentation is by André Mönicke, Program Manager Classical composite analysis and certification methods continue to be used in a significant share of the composite design process. In particular, applying classical methods early in design, and integrating them with finite methods as soon as possible can allow faster decisions which will be rewarded when it comes time for certification. Altair’s latest developments to respond to those needs will be presented, covering the Integrated Composite Stress Toolbox and a Certification framework available in HyperWorks. The recording is about 20 minutes long and was originally presented at the 2020 ATCx Composites.

ATCx Composites 2020
Increasing the Efficiency of Damage Modeling for Filament Wound Pressure Vessels through Multiscale Simulation​

Increasing the Efficiency of Damage Modeling for Filament Wound Pressure Vessels through Multiscale Simulation​

This presentation is by Dávid Migács, R&D Engineer at CIKONI GmbH. A key design issue for new hydrogen-based vehicle drive systems is assuring safety of the start-of-the-art polymer lined, carbon fiber overwrapped vessels working at pressures over 700 bar. Cikoni will describe how a multiscale approach gives a better estimation of burst pressures and insight into damage mechanisms for different laminate layups, at both the macroscopic and micromechanical levels, to validate simulation models for structural optimization of layups, along with life predictions. The recording is about 28 minutes long and was originally presented at the 2020 ATCx Composites.

ATCx Composites 2020
Curing, Cracking and Distortions in Epoxy Composites. Simulating Manufacturing Processes using Finite Element Approach

Curing, Cracking and Distortions in Epoxy Composites. Simulating Manufacturing Processes using Finite Element Approach

This presentation is by Dr. Tomasz Garstka and Graham Barnes, LMAT Ltd. Manufacturing induced deformations and residual stresses are an unavoidable consequence of processing composites at elevated temperatures. A number of mechanisms have been identified causing residual stresses and distortions, including mismatch in the thermal expansion, cure shrinkage of the resin, consolidation and tool-part interaction. These mechanisms usually act collectively through the curing process and may lead to severe changes in the laminate characteristic. When cured and exposed to natural environment moisture swelling, as well as subsequent stress relaxation mechanisms lead to further geometrical changes. A novel cure simulation solver is demonstrated here with the application to typical aircraft components. The recording is about 10 minutes long and was originally presented at the 2020 ATCx Composites.

ATCx Composites 2020
Have a Question? If you need assistance beyond what is provided above, please contact us.