< Back to Search Results

Ultra-Fast High-Fidelity Computational Fluid Dynamics on GPUs for Automotive Aerodynamics

Download White Paper

In this white paper, we present the innovative commercial GPU-based Computational Fluid Dynamics (CFD) solver Altair ultraFluidX. This work features simulations of the DrivAer model, a generic, publicly available vehicle geometry that was developed by the Chair of Aerodynamics and Fluid Mechanics at the Technical University of Munich and which is widely used for testing and validation purposes.

The DrivAer model features rear end, underbody designs, and underhood flow. This model was then used to perform both wind tunnel tests and numerical simulations of the 40% scale open cooling geometry using perforated aluminum sheets with different opening ratios to mimic different radiator properties. Within, we will compare some of the results from these wind tunnel tests with numerical results obtained with Altair ultraFluidX.

All ultraFluidX Technical Document

The Keys to Scalable, Cost-Effective CFD Investment

The Keys to Scalable, Cost-Effective CFD Investment

Fluid mechanics simulation is a critical tool for late-stage failure risk mitigation, as well as a driver of design insights throughout the product development process. Used across all levels of product design and validation, from design engineers seeking to understand fluid and thermal effects on a design proposal to analysts performing advanced aerodynamic modeling, Computational Fluid Dynamics (CFD) serves a broad array of applications and a range of users with varied levels of expertise. The sometimes complex and computationally intensive nature of CFD necessitates careful consideration of the software and hardware investments required to produce accurate solutions and scale them at the speed of a company’s development process.

Technical Document
Have a Question? If you need assistance beyond what is provided above, please contact us.