< Back to Search Results

Fluid - Structure Interaction Analysis and Optimization of an Automotive Component

Download PDF

This paper discusses the behavior of a flexible flap at the rear end of a generic car model under
aerodynamic loads. A strong bidirectional coupling between the flap’s deflection and the flow
field exists which requires this system to be simulated in a coupled fluid-structure manner.

All Related White Papers

E-motor Design using Multiphysics Optimization

E-motor Design using Multiphysics Optimization

Today, an e-motor cannot be developed just by looking at the motor as an isolated unit; tight requirements concerning the integration into both the complete electric or hybrid drivetrain system and perceived quality must be met. Multi-disciplinary and multiphysics optimization methodologies make it possible to design an e-motor for multiple, completely different design requirements simultaneously, thus avoiding a serial development strategy, where a larger number of design iterations are necessary to fulfill all requirements and unfavorable design compromises need to be accepted.

The project described in this paper is focused on multiphysics design of an e-motor for Porsche AG. Altair’s simulation-driven approach supports the development of e-motors using a series of optimization intensive phases building on each other. This technical paper offers insights on how the advanced drivetrain development team at Porsche AG, together with Altair, has approached the challenge of improving the total design balance in e-motor development.

White Papers
Have a Question? If you need assistance beyond what is provided above, please contact us.