< Back to Search Results

Infographic: The Impact of Multiphysics Optimization on e-Motor Development

Download PDF

Simulation helps you validate at the end of a product design cycle, but deployed early and throughout a development process, it can actually allow you to explore more potential solutions, collaborate more effectively and optimize the design for cost, performance, weight, and other important criteria. This infographic provides a framework for developing and implementing your own simulation-driven process to help you produce more efficient e-motors and shorten development times. 

All Related Technical Document

What is Simulation Doing for Machine Builders

What is Simulation Doing for Machine Builders

A key development goal of any machine-building project is to produce perfectly running, reliable machines that make high-quality products. By leveraging accurate virtual prototypes, seamless production can be ensured earlier in the development process to help assess and improve product profitability.

Technical Document
Complex Radome Electromagnetics Simulation in Minutes

Complex Radome Electromagnetics Simulation in Minutes

Radomes are used across multiple industries, including aerospace, defense, electronics, and telecommunications. When properly designed, the radome can actually enhance the performance of an antenna system. The proper selection of a radome for a given antenna can help improve the overall electromagnetic system performance by eliminating wind loading, allowing for all-weather operation, and providing shelter for installation and maintenance. Altair’s radome simulation solution helps to streamline the design of these complex components, ensuring performance while significantly reducing development time.

Technical Document
Data Discipline: Managing Engineering Data for AI-powered Design

Data Discipline: Managing Engineering Data for AI-powered Design

The advancements in the fields of AI and ML, combined with the increased availability of robust simulation, testing, and field data sets has made engineering data science a critical component of the modern product development lifecycle, but in order to extract maximum value from these exciting tools, companies need a plan to store, manage, and utilize their data efficiently. They need data discipline

Technical Document
Applying Machine Learning Augmented Simulation to Heavy Equipment

Applying Machine Learning Augmented Simulation to Heavy Equipment

Simulation-driven design changed heavy equipment product development forever, enabling engineers to reduce design iterations and prototype testing. Increasing scientific computing power expanded the opportunity to apply analysis, making large design studies possible within the timing constraints of a program. Now engineering data science is transforming product development again. Augmented simulation features inside Altair® HyperWorks® are accelerating the design decision process with machine learning (ML). The power of ML-based AI-powered design combined with physics-based simulation-driven design leveraging the latest in high-performance computing is just being realized.

Technical Document
Optimizing Medical Stents with Machine Learning

Optimizing Medical Stents with Machine Learning

Medical stents are a lifeline for patients with cardiovascular illness and disease. Altair's solutions can speed up development time by satisfying the testing of variables virtually, allowing engineers to truly optimize the design and performance of medical stents.

Technical Document
 Magneto-thermal PMSM Performance Simulation with Validation

Magneto-thermal PMSM Performance Simulation with Validation

In order to reduce energy consumption, efficiency is a key criterion that designers seek to optimize their electric motors. Complementary to the electromagnetic analysis, a thermal characterization is essential to study from the first design phase how temperature influences the performance of the machine. To obtain results close to the real working conditions, the motor control and the current harmonics produced by the electrical converter and control algorithms cannot be ignored.

Technical Document
Rethinking the e-Motor Design Process to Maximize Vehicle Range

Rethinking the e-Motor Design Process to Maximize Vehicle Range

In this article, appearing in the Fall 2020 issue of Engine + Powertrain Technology International, Altair outlines how a holistic approach to propulsion system design is enabling manufacturers to meet performance requirements while maximizing vehicle range.

Technical Document
Power Transformer under Short-circuit Fault Conditions:  Multiphysics Approach to Evaluate the Robustness

Power Transformer under Short-circuit Fault Conditions: Multiphysics Approach to Evaluate the Robustness

Transformers’ windings experience mechanical loads from electromagnetic forces due to the currents they carry. Power transformers can suffer from high sudden short-circuit currents. These short-circuit currents are a significant threat, not only from an electrical but also from the structural integrity point of view. In this paper, coupled electromagnetic and structural mechanics simulations are carried out to evaluate short-circuit fault risks in a comprehensive and accurate way.

Technical Document
The Influence of Sensors on e-Motor Powertrain Performance

The Influence of Sensors on e-Motor Powertrain Performance

High accuracy sensors and encoders are integral components of an e-motor drive, greatly impacting the quality and efficiency on the system. A purpose-driven simulation approach is needed to account for all the physical interdependencies within these complex multi-domain systems.

Technical Document
Magneto Vibro Acoustic Design of PWM Fed Induction Machines

Magneto Vibro Acoustic Design of PWM Fed Induction Machines

Induction Motors (IM) are widely used in various industries. To ensure their speed control, IM will be supplied with pulse width modulation (PWM). This kind of supply, can impact efficiency of the motor and degrade its vibro-acoustic behavior, generating noise nuisance. To tackle these technical challenges and ensure best-in class acoustic comfort for users, it is necessary to design a quiet e-motors at the early stage of design. The first aim of this paper is to show a new method to reduce noise and vibration due to PWM supply of induction machine. The proposed approach allows the passive reduction of air-gap flux density harmonics in an induction machine. The second interest, is to show a new method to analyze the vibro-acoustic behavior of a PWM-fed IM. The method is fully finite element (FE) computation. Finally, the third interest of this article, is to compare noise and vibration results between the proposed FE method, magneto-vibro-acoustic coupling and measurements. Good agreement between measurements and computation will be shown.

Technical Document
Multi-Physics Design and Optimization of a Complex Radar System

Multi-Physics Design and Optimization of a Complex Radar System

Today, most products are complex mechatronic combinations of advanced technologies, mixing electrical parts with controllers and embedded software. To efficiently manage innovative products, organizations are turning to a Model-Based Development approach for concept studies, control design, multi-domain system simulation and optimization. To meet this demand, Altair’s simulation and optimization suite aims to transform design and decision-making throughout product lifecycles with their multi-disciplinary software tools and consultancy services.

Technical Document
Maximizing the joint strength of a clinching process using AFDEX and HyperStudy

Maximizing the joint strength of a clinching process using AFDEX and HyperStudy

In this white paper, a suitable FE model of a joining process(clinching) is built using the metal forming simulator AFDEX and then the process is optimized using the multidisciplinary optimization software HyperStudy from Altair.

Technical Document
Seat Design for Crash in the Cloud

Seat Design for Crash in the Cloud

The benefit of design exploration and optimization is understood and accepted by engineers but the required intensive computational resources have been a challenge for their adoption into the design process. The HyperWorks Unlimited (HWUL) appliance provides an effective solution to these challenges as it seamlessly connects all the necessary tools together in the cloud. The aim of this study is to showcase the benefits of HWUL on an optimization driven design of a complex system. For this purpose an automotive seat design for crash loadcases is selected.

Technical Document
Magnet Weight Minimization of Electric Traction Interior Permanent Magnet Motor Over Multiple Operating Points

Magnet Weight Minimization of Electric Traction Interior Permanent Magnet Motor Over Multiple Operating Points

This paper describes the process of using Altair tools such as Flux for synchronous permanent magnet motor EM FEA analysis and HyperStudy to minimize the weight of the NdFeB magnets of a typical IPM motor for electric traction application such as the IPM motor of the Toyota Prius 2010.

Technical Document
Snap-Fit Optimization for Achieving Desired Insertion and Retention Forces

Snap-Fit Optimization for Achieving Desired Insertion and Retention Forces

Snap-fits are ubiquitous engineering features used to quickly and inexpensively assemble plastic parts. The geometric, material, and contact nonlinearities associated with snap-fit problems can present modeling challenges. Quasi-static solutions with explicit solvers are commonly used to analyze snapfits; however, OptiStruct’s nonlinear solver now possess the ability to solve these highly nonlinear problems implicitly. The first part of this study discusses an effective approach to using OptiStruct for the implicit finite element analysis of snap-fits. Once an accurate simulation model has been created, engineers typically make design changes in order to achieve desired insertion and retention forces. The second part of this study details how HyperMesh morphing and HyperStudy can be used to optimize the snap-fit design, resulting in desired insertion and retention forces while minimizing mass and ensuring structural integrity. The approach documented in this report can reduce the design time, material use, and failure rate of snap-fits used in industry.

Technical Document
Multi-physics Electric Motor Optimization for Noise Reduction

Multi-physics Electric Motor Optimization for Noise Reduction

In an electric machine, the torque is generated by electromagnetic forces which also create some parasitic vibrations of the stator. These vibrations excite the mechanical structure on which the motor is fixed and generate sound. When designing the electric machine, this aspect has to be taken into account from the start since it depends on the harmonic content of the currents that feed the machine, on the shapes of the rotor and stator, and on the interaction of the electric frequencies with the natural mechanical modes of the structure. To simulate this phenomenon, a coupling between electromagnetic calculations and vibration analysis has to be set-up. Some optimization procedure can also be added in order to reduce the noise. In what follows, it is shown how Altair HyperWorks suite; specifically FluxTM, OptiStruct®, HyperMesh® and HyperStudy® products have been successfully used to perform a multi-physics optimization for noise reduction in a fuel pump permanent magnet motor.

Technical Document
Thermal Analysis of Electrical Equipment A review and comparison of different methods

Thermal Analysis of Electrical Equipment A review and comparison of different methods

Nowadays, it is more and more difficult to design electro-technique devices without having a look at thermal stress. In more and more applications (more electric vehicles, more electric aircrafts, …) designers need to reduce weight, cost, increase efficiency, and keep the same security factor. One possibility is to increase current for the same device, needing to check how to draw away the heat. This is why the classical approximations need to be cross checked with complementary analysis. These new tools have to be rapid and accurate in order to run parametric and even optimization analysis. There is also a need for fast model in order to check robustness versus driving cycles. The goal in this article is to review rapidly the different methods available, depending on the accuracy required and the solving speed. The method includes equivalent thermal circuits, Finite elements methods and CFD analysis.

Technical Document
How to Efficiently Design Power Transformers

How to Efficiently Design Power Transformers

Since approximately 40% of grid losses are dissipated from power transformers, there is now a great need to analyse these important components of the electrical network. Altair Flux 2D / 3D plays a key role in those investigations.

Technical Document
RAMDO - HyperStudy & OptiStruct Example

RAMDO - HyperStudy & OptiStruct Example

This step-by-step tutorial details how to use RAMDO with HyperStudy and OptiStruct.

Technical Document
Hydrogenerators Finite Element Modeling with Flux

Hydrogenerators Finite Element Modeling with Flux

This article mainly focusses on the electrical engineering aspects of the design. Hydrogenerators parameters extraction and dynamical behavior prediction can be easily determined with a two-dimensional finite element modeling.

Technical Document
White Paper: Minimization of Forming Load of Gear Driver Forging Process with AFDEX and HyperStudy

White Paper: Minimization of Forming Load of Gear Driver Forging Process with AFDEX and HyperStudy

In this paper, a workflow is presented that integrates the functionalities of a metal forming simulation software, AFDEX and a multidisciplinary optimization software, HyperStudy. Using this approach, the forming load of a gear driver used in an automotive transmission is minimized and two die design parameters are optimized.

Technical Document
Benchmark of HyperStudy Optimization Algorithms

Benchmark of HyperStudy Optimization Algorithms

The objective of this paper is to assess several optimization algorithms in HyperStudy for their effectiveness and efficiency. The following sections of this paper present an overview of the optimization algorithms frequently used in HyperStudy. This is followed by benchmarking of both single objective and multi-objective optimization problems, respectively.

Technical Document
Automotive Modal Testing Support and CAE Correlation Using Altair HyperWorks

Automotive Modal Testing Support and CAE Correlation Using Altair HyperWorks

To derive the natural frequencies and mode shapes of a given structure, the test Engineer has to decide on excitation positions that will efficiently excite all the modes of the structure in the frequency range of interest. Excitation positions are usually decided upon from experience or trial and error methods which can be time consuming and still not capture all of the modes in the selected frequency range. Using Altair HyperStudy and Radioss (bulk), Pre-test CAE analysis has been carried out to identify effective excitation positions before the commencement of modal testing, thereby significantly reducing pre-test lab time.

Technical Document
Simulating the Suspension Response of a High Performance Sports Car

Simulating the Suspension Response of a High Performance Sports Car

The use of CAE software tools as part of the design process for mechanical systems in the automotive industry is now commonplace. This paper highlights the use of Altair HyperWorks to assess and then optimize the performance of a McLaren Automotive front suspension system. The tools MotionView and MotionSolve are used to build the model and then carry out initial assessments of kinematics and compliance characteristics. Altair HyperStudy is then used to optimize the position of the geometric hard points and compliant bush rates in order to meet desired suspension targets. The application of this technology to front suspension design enables McLaren Automotive to dramatically reduce development time.

Technical Document
Cobot, the Collaborative Robot - Get Ready for Industry 4.0

Cobot, the Collaborative Robot - Get Ready for Industry 4.0

Development tools and methods, such as simulation, are increasingly important to face and address the pressure of innovation. As an example, for successful new design methods and to show how simulation tools are used, Altair developed a virtual demonstrator based on a cobot application. This complex machine interacts with a human operator as the ultimate smart manufacturing equipment - to show how challenges in modern product design can be overcome.

Technical Document
Have a Question? If you need assistance beyond what is provided above, please contact us.